ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
N. D. Viza, M. H. Romanofsky, M. J. Moynihan, D. R. Harding
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 219-225
Technical Paper | doi.org/10.13182/FST15-216
Articles are hosted by Taylor and Francis Online.
A T-junction microfluidic device consists of one microchannel connected to a second microchannel at 90 deg. The size of the emulsions that form at the junction depends on the dimensions of the channel and the properties of the immiscible fluids flowing through them. Micron-sized emulsions are easily formed in small channels where interfacial tension forces dominate, but it is more difficult to form larger emulsions that could be used to produce inertial confinement fusion (ICF) targets. The concept and feasibility of using this method to mass-produce millimeter-sized ICF targets are presented.
The experimental data presented here will demonstrate the competing contribution of the fluids’ surface tension and fluid velocity to forming and controlling the volume of millimeter-sized oil-in-water emulsions. The oil-in-water emulsion is the first step in the process of making resorcinol-formaldehyde foam targets (1 to 4 mm in diameter). Adding a surfactant to the aqueous phase lowered the aqueous-solid surface energy, which allowed for greater flexibility in manufacturing T-junctions. Equally important, although it also lowered the interfacial surface tension, the emulsions remained encapsulated by adjusting the flow velocities. The effect of the surfactant on the completing shear, viscous, and surface energy forces involved in the microencapsulation mechanism is described. Oil-in-water emulsions, 1.32 to 8.32 mm in diameter, and water-in-oil emulsions, 1.10 to 3.2 mm diameter, were formed. A protocol is presented for tuning the droplet diameter to a desired value based on the capillary number and the relative fluid velocities ratio (which must be below 0.5). A linear regression showed the relationship between the fluid velocities and desired droplet diameter. Control of the outer diameter was demonstrated over a 1.75- to 4.14-mm-diameter range with a 426- to 900-μm wall thickness.