ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Beyond Nuclear brings interim storage case back to Supreme Court
The U.S. Supreme Court may once again scrutinize the Nuclear Regulatory Commission’s authority to license consolidated interim storage facilities for commercial spent nuclear fuel. The antinuclear group Beyond Nuclear has filed a petition with the court for a writ of certiorari review of an August 2024 appeals court decision rejecting the group’s lawsuit against the licensing of Holtec International’s New Mexico storage facility, the HI-STORE CISF.
H. Huang, L. C. Carlson, W. Requieron, N. Rice, D. Hoover, M. Farrell, D. Goodin, A. Nikroo, J. Biener, M. Stadernann, S. W. Haan, D. Ho, C. Wild
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 377-386
Technical Paper | doi.org/10.13182/FST15-220
Articles are hosted by Taylor and Francis Online.
High-density carbon (HDC) is being evaluated as an alternative to the current National Ignition Facility (NIF) point-design ablator material (glow discharge plasma, or GDP, plastic) due to its high density and optimal opacity, which leads to a higher implosion velocity. Chemical-vapor-deposition–coated HDC capsules have a near perfect surface figure but a microscopically rough surface. After polishing, the surface becomes smooth at nanometer scales but has numerous micron-sized surface pits, whose volumes, morphology, and distribution must be quantified to guide NIF target selection. Traditional metrology tools for GDP surface defects, such as the atomic force microscope (AFM) based Spheremapper and a phase-shifting differential interferometer, lack the resolution to characterize these localized features. In this paper, we describe how this metrology challenge is met by developing automated surface metrology solutions based on a high-density (HD) AFM and a Leica confocal microscope. These tools are complementary in nature. HD-AFM has a 0.1-μm spatial resolution and determines the overall shape distortion and pit statistics by tracing great circles on a capsule with high throughput. The Leica confocal microscope maps the two-dimensional (2-D) surface at low magnification to find all large defects that could be missed by HD-AFM. Then, a high magnification scan inspects at a 0.3-μm lateral resolution to characterize the defect volume. These 2-D maps provide an opportunity for modeling the shell performance at the peak implosion velocity, thereby aiding capsule selection. These new and improved metrology tools provide quantitative data for the continual refinement of the NIF specifications for HDC capsules. Finally, we report on the development of a laser ablation tool that, when combined with the Leica confocal microscope, can identify, quantify, and laser-ablate GDP domes that do not meet NIF specifications.