ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
H. Huang, L. C. Carlson, W. Requieron, N. Rice, D. Hoover, M. Farrell, D. Goodin, A. Nikroo, J. Biener, M. Stadernann, S. W. Haan, D. Ho, C. Wild
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 377-386
Technical Paper | doi.org/10.13182/FST15-220
Articles are hosted by Taylor and Francis Online.
High-density carbon (HDC) is being evaluated as an alternative to the current National Ignition Facility (NIF) point-design ablator material (glow discharge plasma, or GDP, plastic) due to its high density and optimal opacity, which leads to a higher implosion velocity. Chemical-vapor-deposition–coated HDC capsules have a near perfect surface figure but a microscopically rough surface. After polishing, the surface becomes smooth at nanometer scales but has numerous micron-sized surface pits, whose volumes, morphology, and distribution must be quantified to guide NIF target selection. Traditional metrology tools for GDP surface defects, such as the atomic force microscope (AFM) based Spheremapper and a phase-shifting differential interferometer, lack the resolution to characterize these localized features. In this paper, we describe how this metrology challenge is met by developing automated surface metrology solutions based on a high-density (HD) AFM and a Leica confocal microscope. These tools are complementary in nature. HD-AFM has a 0.1-μm spatial resolution and determines the overall shape distortion and pit statistics by tracing great circles on a capsule with high throughput. The Leica confocal microscope maps the two-dimensional (2-D) surface at low magnification to find all large defects that could be missed by HD-AFM. Then, a high magnification scan inspects at a 0.3-μm lateral resolution to characterize the defect volume. These 2-D maps provide an opportunity for modeling the shell performance at the peak implosion velocity, thereby aiding capsule selection. These new and improved metrology tools provide quantitative data for the continual refinement of the NIF specifications for HDC capsules. Finally, we report on the development of a laser ablation tool that, when combined with the Leica confocal microscope, can identify, quantify, and laser-ablate GDP domes that do not meet NIF specifications.