ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Jeffrey King guides new nuclear program at Tennessee Tech
Jeffrey King
In August, the College of Engineering at Tennessee Technological University welcomed ANS member Jeffrey C. King as the founding director of its new nuclear engineering program. King, a leading force within the American Nuclear Society and a space enthusiast, is tasked with developing a new Department of Nuclear Engineering at Tennessee Tech after a more than 20-year absence of such a program at the university.
King comes to Tennessee Tech from the Colorado School of Mines, where he had been a professor of metallurgical and materials engineering for 15 years, leading the development of the nuclear science and engineering program and serving as director of the Nuclear Science and Engineering Research Center.
B. P. Chock, T. B. Jones, D. R. Harding
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 206-218
Technical Paper | doi.org/10.13182/FST15-215
Articles are hosted by Taylor and Francis Online.
The electric-field–assembly technique proposed for making fusion targets uses the electrical force from dielectrophoresis and electrowetting-on-dielectric phenomena to form droplets of oil and water, combine them into an emulsion, and then center one phase inside the surrounding immiscible phase. Forming the water droplet becomes more problematic with the addition of a surfactant, which is needed to stabilize an oil-in-water emulsion. The effect of increasing the amount of surfactant on the droplet-dispensing process is presented, and a mechanism for this behavior is provided.
Increasing the surfactant concentration slows the rate at which surfactant-water droplets are dispensed and increases the variability in the volume of successive droplets. This effect becomes more pronounced near the critical micelle concentration (CMC). Increasing the applied electric field (V > 75 Vrms) improves the dispensing process but decreases the lifetime of the dielectric coatings (for V > 125 Vrms). The stronger electric field forces surfactant molecules to aggregate at the edges of the water droplet where the electrical forces are the greatest. The difficulty of separating a surfactant-laden droplet from the bulk fluid is attributed to the reduced liquid-air surface tension, the lower liquid-substrate surface energy, and a higher disjoining pressure in the thin-film membrane attaching the droplet to the bulk fluid.
The parameters studied include the surfactant concentration (Silwet L-77) from 0 to 0.025 wt% (2.5× the CMC limit), the voltage from 75 to 150 Vrms, and the frequency from 0.1 to 10 kHz.