ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
B. P. Chock, T. B. Jones, D. R. Harding
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 206-218
Technical Paper | doi.org/10.13182/FST15-215
Articles are hosted by Taylor and Francis Online.
The electric-field–assembly technique proposed for making fusion targets uses the electrical force from dielectrophoresis and electrowetting-on-dielectric phenomena to form droplets of oil and water, combine them into an emulsion, and then center one phase inside the surrounding immiscible phase. Forming the water droplet becomes more problematic with the addition of a surfactant, which is needed to stabilize an oil-in-water emulsion. The effect of increasing the amount of surfactant on the droplet-dispensing process is presented, and a mechanism for this behavior is provided.
Increasing the surfactant concentration slows the rate at which surfactant-water droplets are dispensed and increases the variability in the volume of successive droplets. This effect becomes more pronounced near the critical micelle concentration (CMC). Increasing the applied electric field (V > 75 Vrms) improves the dispensing process but decreases the lifetime of the dielectric coatings (for V > 125 Vrms). The stronger electric field forces surfactant molecules to aggregate at the edges of the water droplet where the electrical forces are the greatest. The difficulty of separating a surfactant-laden droplet from the bulk fluid is attributed to the reduced liquid-air surface tension, the lower liquid-substrate surface energy, and a higher disjoining pressure in the thin-film membrane attaching the droplet to the bulk fluid.
The parameters studied include the surfactant concentration (Silwet L-77) from 0 to 0.025 wt% (2.5× the CMC limit), the voltage from 75 to 150 Vrms, and the frequency from 0.1 to 10 kHz.