ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
B. P. Chock, T. B. Jones, D. R. Harding
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 206-218
Technical Paper | doi.org/10.13182/FST15-215
Articles are hosted by Taylor and Francis Online.
The electric-field–assembly technique proposed for making fusion targets uses the electrical force from dielectrophoresis and electrowetting-on-dielectric phenomena to form droplets of oil and water, combine them into an emulsion, and then center one phase inside the surrounding immiscible phase. Forming the water droplet becomes more problematic with the addition of a surfactant, which is needed to stabilize an oil-in-water emulsion. The effect of increasing the amount of surfactant on the droplet-dispensing process is presented, and a mechanism for this behavior is provided.
Increasing the surfactant concentration slows the rate at which surfactant-water droplets are dispensed and increases the variability in the volume of successive droplets. This effect becomes more pronounced near the critical micelle concentration (CMC). Increasing the applied electric field (V > 75 Vrms) improves the dispensing process but decreases the lifetime of the dielectric coatings (for V > 125 Vrms). The stronger electric field forces surfactant molecules to aggregate at the edges of the water droplet where the electrical forces are the greatest. The difficulty of separating a surfactant-laden droplet from the bulk fluid is attributed to the reduced liquid-air surface tension, the lower liquid-substrate surface energy, and a higher disjoining pressure in the thin-film membrane attaching the droplet to the bulk fluid.
The parameters studied include the surfactant concentration (Silwet L-77) from 0 to 0.025 wt% (2.5× the CMC limit), the voltage from 75 to 150 Vrms, and the frequency from 0.1 to 10 kHz.