ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Suhas Bhandarkar, Jacob Betcher, Ryan Smith, Bruce Lairson, Travis Ayers
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 332-340
Technical Paper | doi.org/10.13182/FST15-218
Articles are hosted by Taylor and Francis Online.
Targets for inertial confinement fusion shots on the National Ignition Facility typically use thin polyimide films, ~500 nm, with a coating of 25 nm of aluminum as windows that seal the laser entrance hole. Their role is to contain the hohlraum gas and minimize the extraneous infrared radiation getting in. This is necessary to control precisely the hohlraum thermal environment for layering inside the capsule with solid deuterium-tritium at 18 K. Here, we use our empirical data on the bulging behavior of these foils under various different conditions to develop models to capture the complex viscoelastic behavior of these films at both room and cryogenic temperatures. The constitutive equations derived from these models give us the ability to quantitatively specify the film’s behavior during the fielding of these targets and set the best parameters for new target designs.