ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
Argonne assists advanced reactor development with award-winning safety software
The development of modern nuclear reactor technologies relies heavily on complex software codes and computer simulations to support the design, construction, and testing of physical hardware systems. These tools allow for rigorous testing of theory and thorough verification of design under various use or transient power scenarios.
L. C. Carlson, M. A. Johnson, T. L. Bunn
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 141-153
Technical Paper | doi.org/10.13182/FST15-248
Articles are hosted by Taylor and Francis Online.
Topographical modifications of spherical surfaces are imprinted on National Ignition Facility target capsules by extending the capabilities of a recently developed full-surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density, and long reach of a focused laser beam to preimpose sinusoidal modulations on the outside surface of high-density carbon capsules and the inside surface of glow discharge polymer capsules. Sinusoidal modulations described in this paper have submicron to tens of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulated patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as the laser beam intensity profile, the material removal function, the starting surface figure, and the desired surface figure. The patterns are optimized to minimize surface roughness. In this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.