ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
S. J. Shin, L. A. Zepeda-Ruiz, J. R. I. Lee, S. H. Baxamusa, R. Dylla-Spears, T. Suratwala, B. J. Kozioziemski
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 184-190
Technical Paper | doi.org/10.13182/FST15-212
Articles are hosted by Taylor and Francis Online.
We explored templating effects of various materials for hydrogen (H2 and D2) solidification by measuring the degree of supercooling required for liquid hydrogen to solidify below each triple point. The results show high supercooling (>100 mK) for most metallic, covalent, and ionic solids, and low supercooling (<100 mK) for van der Waals (vdW) solids. We attribute the low supercooling of vdW solids to the weak interaction of the substrate and hydrogen. Highly ordered pyrolytic graphite showed the lowest supercooling among materials that are solid at room temperature, but did not exhibit a templating effect within a fill-tube and capsule assembly.