ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
K.-J. Boehm, C. R. Gibson, J. R. Hollaway, F. Espinosa-Loza
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 265-273
Technical Paper | doi.org/10.13182/FST15-217
Articles are hosted by Taylor and Francis Online.
This paper presents the design of a flexure-based mount allowing adjustment in three rotational degrees of freedom (DOFs) through high-precision set-screw actuators. The requirements of the application called for small but controlled angular adjustments for mounting a cantilevered beam. The proposed design is based on an array of parallel beams to provide sufficiently high stiffness in the translational directions while allowing angular adjustment through the actuators. A simplified physical model in combination with standard beam theory was applied to estimate the deflection profile and maximum stresses in the beams. A finite element model was built to calculate the stresses and beam profiles for scenarios in which the flexure is simultaneously actuated in more than one DOF.