ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
S. Le Tacon, A. Brodier, C. Chicanne, M. Theobald
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 351-357
Technical Paper | doi.org/10.13182/FST15-240
Articles are hosted by Taylor and Francis Online.
Some experiments implemented on the Laser Megajoule facility (LMJ) require the use of the rare-earth (RE) elements, the lanthanides (57 < Z < 71). Rare-earth metals are known to be unstable under atmospheric conditions and some of them are extremely reactive with air. They may react with oxygen and humidity to form RE oxides. In the present work, we study the oxidation of different RE thin films (gadolinium, dysprosium, and praseodymium) prepared by physical vapor deposition. Energy-dispersion spectroscopy, scanning electron microscopy, Rutherford backscattering spectroscopy, and weight measurement are performed to characterize the corrosion mechanisms as a function of time and aging atmospheres (air, dry box, and vacuum). It appears that the oxidation kinetics depends on atomic number and microstructure of the films. Praseodymium coatings are very quickly corroded (in a few hours) when exposed to air and degrade to a yellow powder. Aluminum layers, used as a diffusion barrier, allow us to preserve praseodymium coatings over a period of several weeks when aging in a dry box. Gadolinium and dysprosium coatings (without a protective layer) are preserved from corrosion due to the formation of a passivation layer on their surface. Whatever Z, a dense microstructure permits us to limit the oxygen content and allows us to stabilize the residual stress.