ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
Fusion Science and Technology
Latest News
Deadline extended to apply for ANS's 2023 ANS Congressional Fellowship
The American Nuclear Society invites its members to apply for the Glenn T. Seaborg Congressional Science and Engineering Fellowship to help the Society fulfill its strategic goal of informing nuclear public policy.
The deadline has been extended. Applications and supporting documents are now due by 11:59 p.m. (EDT) on Monday, May 23.
K.-J. Boehm, N. Hash, D. Barker, T. Döppner, M. P. Farrell, P. Fitzsimmons, D. Kaczala, D. Kraus, B. Maranville, M. Mauldin, P. Neumayer, K. Segraves
Fusion Science and Technology | Volume 70 | Number 2 | August-September 2016 | Pages 324-331
Technical Paper | dx.doi.org/10.13182/FST15-242
Articles are hosted by Taylor and Francis Online.
Reconciling the experimental and system requirements during the development of a new target system is one of the most challenging tasks in the design and engineering of targets used in the National Ignition Facility.
Targets for the GigaBar 3 campaign were meant to allow the detection of extremely weak Thomson scattering from matter at extreme densities in the face of very bright backlighter and laser entry hole plasma emissions. The problem was to shield the detector sufficiently while maintaining beamline and view clearances, and observing target mass restrictions.
A new construction process, based on a rapid prototype frame structure, was used to develop this target. Details of the design process for these targets are described, and lessons from this development for production and target assembly teams are discussed.