ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 97-111
Technical Paper | doi.org/10.13182/FST15-198
Articles are hosted by Taylor and Francis Online.
The migration of tritium to the surfaces of Aluminum 6061; oxygen-free, high-conductivity copper; and Type 316 stainless steel from the bulk metal was studied using low-pressure Tonks-Langmuir argon plasma. The plasma is shown to be effective at removing tritium from metal surfaces in a controlled manner. Tritium is removed in decreasing quantities with successive plasma exposures, which suggests a depletion of the surface and near-surface-tritium inventories.
A diffusion model was developed to predict tritium migration from the bulk and its accumulation in the water layers present on the metal surface. The model reproduces the rate of tritium regrowth on the surface for all three metals and can be used to calculate the triton solubility in the water layers present on metal surfaces. The ratio of surface-to-bulk solubilities at the water layer–bulk metal interface uniquely determines the concentration ratio between these two media. Removing the tritium-rich water layers induces tritium to migrate from the bulk to the surface. This process is driven by a concentration gradient that develops in the bulk because of the perturbation on the surface.