ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Beyond Nuclear brings interim storage case back to Supreme Court
The U.S. Supreme Court may once again scrutinize the Nuclear Regulatory Commission’s authority to license consolidated interim storage facilities for commercial spent nuclear fuel. The antinuclear group Beyond Nuclear has filed a petition with the court for a writ of certiorari review of an August 2024 appeals court decision rejecting the group’s lawsuit against the licensing of Holtec International’s New Mexico storage facility, the HI-STORE CISF.
M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 97-111
Technical Paper | doi.org/10.13182/FST15-198
Articles are hosted by Taylor and Francis Online.
The migration of tritium to the surfaces of Aluminum 6061; oxygen-free, high-conductivity copper; and Type 316 stainless steel from the bulk metal was studied using low-pressure Tonks-Langmuir argon plasma. The plasma is shown to be effective at removing tritium from metal surfaces in a controlled manner. Tritium is removed in decreasing quantities with successive plasma exposures, which suggests a depletion of the surface and near-surface-tritium inventories.
A diffusion model was developed to predict tritium migration from the bulk and its accumulation in the water layers present on the metal surface. The model reproduces the rate of tritium regrowth on the surface for all three metals and can be used to calculate the triton solubility in the water layers present on metal surfaces. The ratio of surface-to-bulk solubilities at the water layer–bulk metal interface uniquely determines the concentration ratio between these two media. Removing the tritium-rich water layers induces tritium to migrate from the bulk to the surface. This process is driven by a concentration gradient that develops in the bulk because of the perturbation on the surface.