ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Materials in Nuclear Energy Systems (MiNES 2023)
December 10–14, 2023
New Orleans, LA|New Orleans Marriott
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
December 2023
Nuclear Technology
Fusion Science and Technology
November 2023
Latest News
Argonne assists advanced reactor development with award-winning safety software
The development of modern nuclear reactor technologies relies heavily on complex software codes and computer simulations to support the design, construction, and testing of physical hardware systems. These tools allow for rigorous testing of theory and thorough verification of design under various use or transient power scenarios.
John Sheffield, Stanley L. Milora
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 14-35
Technical Paper | doi.org/10.13182/FST15-157
Articles are hosted by Taylor and Francis Online.
The original generic magnetic fusion reactor paper was published in 1986 for deuterium-tritium reactors. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But, these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. In addition, today’s inflation and interest rates are low, leading to a cost of money well below that used in the original study. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermoelectric efficiency, electrical power output, and the present day’s low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux of 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the possible use of niobium-titanium coils are also investigated. It should be emphasized that the variation in the COEs is important rather than their absolute values.