ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Markus Rampp, Roland Preuss, Rainer Fischer, ASDEX Upgrade Team
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 1-13
Technical Paper | doi.org/10.13182/FST15-154
Articles are hosted by Taylor and Francis Online.
A new parallel equilibrium reconstruction code for tokamak plasmas—the Garching Parallel Equilibrium Code (GPEC)—is presented. GPEC allows one to compute equilibrium flux distributions sufficiently accurate to derive parameters for plasma control within 1 ms of run time, which enables real-time applications at the ASDEX Upgrade (AUG) experiment and other machines with a control cycle of at least this size. The underlying algorithms are based on the well-established off-line–analysis code CLISTE, following the classical concept of iteratively solving the Grad-Shafranov equation and feeding in diagnostic signals from the experiment. The new code adopts a hybrid parallelization scheme for computing the equilibrium flux distribution and extends the fast, shared-memory-parallel Poisson solver that we have described previously by a distributed computation of the individual Poisson problems corresponding to different basis functions. The code is based entirely on open-source software components and runs on standard server hardware and software environments. The real-time capability of GPEC is demonstrated by performing an off-line computation of a sequence of 1000 flux distributions that are taken from 1 s of operation of a typical AUG discharge and deriving the relevant control parameters with a time resolution of 1 ms. On the current server hardware, the new code allows employing a grid size of 32 × 64 zones for the spatial discretization and up to 15 basis functions. It takes into account about 90 diagnostic signals while using up to four equilibrium iterations and computing more than 20 plasma-control parameters, including the computationally expensive safety factor q on at least four different levels of the normalized flux.