ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Markus Rampp, Roland Preuss, Rainer Fischer, ASDEX Upgrade Team
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 1-13
Technical Paper | doi.org/10.13182/FST15-154
Articles are hosted by Taylor and Francis Online.
A new parallel equilibrium reconstruction code for tokamak plasmas—the Garching Parallel Equilibrium Code (GPEC)—is presented. GPEC allows one to compute equilibrium flux distributions sufficiently accurate to derive parameters for plasma control within 1 ms of run time, which enables real-time applications at the ASDEX Upgrade (AUG) experiment and other machines with a control cycle of at least this size. The underlying algorithms are based on the well-established off-line–analysis code CLISTE, following the classical concept of iteratively solving the Grad-Shafranov equation and feeding in diagnostic signals from the experiment. The new code adopts a hybrid parallelization scheme for computing the equilibrium flux distribution and extends the fast, shared-memory-parallel Poisson solver that we have described previously by a distributed computation of the individual Poisson problems corresponding to different basis functions. The code is based entirely on open-source software components and runs on standard server hardware and software environments. The real-time capability of GPEC is demonstrated by performing an off-line computation of a sequence of 1000 flux distributions that are taken from 1 s of operation of a typical AUG discharge and deriving the relevant control parameters with a time resolution of 1 ms. On the current server hardware, the new code allows employing a grid size of 32 × 64 zones for the spatial discretization and up to 15 basis functions. It takes into account about 90 diagnostic signals while using up to four equilibrium iterations and computing more than 20 plasma-control parameters, including the computationally expensive safety factor q on at least four different levels of the normalized flux.