ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
TEPCO launches English-language fuel debris portal website
Tokyo Electric Power Company has added an English-language version of its Fuel Debris Portal Site to its website. According to the company, the portal is intended to deliver information pertaining to melted nuclear fuel debris at the Fukushima Daiichi site to the public in an easy-to-understand manner.
Hongda He, J. Q. Dong, Zhixiong He, K. Zhao
Fusion Science and Technology | Volume 70 | Number 1 | July 2016 | Pages 54-61
Technical Paper | doi.org/10.13182/FST15-169
Articles are hosted by Taylor and Francis Online.
The density gradient of fast ions is the main driving force for fishbone instability that in turn results in fast ion loss. It is possible to reduce the instability by eliminating the density gradient of the fast ions by employing dual neutral beam injection (DNBI) in tokamak plasmas. The dispersion relation for the fishbone instability is applied to the case of DNBI with suitable fast ion distribution functions. The results show that the density distribution of fast ions of DNBI can bring about a stable window that is a range of values for the distance between the on-axis beam and the off-axis beam that yields an overall stabilization of the resultant fishbone mode. The width of the stable window increases linearly with the position of the safety factor q = 1 magnetic flux surface increasing. In addition, the width of the stable window becomes wider for a more peaked density profile of fast ions and keeps constant for a peaked enough density profile of fast ions. The growth rates of the fishbone modes dramatically decrease with the intensity ratio of off-axis neutral beam injection (NBI) and on-axis NBI, and the critical beta values of fast ions increase with the intensity ratio increasing. Fishbone modes can be avoided with DNBI, which may be an effective method to prevent fast ion loss resulting from fishbone instabilities.