ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. Wojenski, K. Pozniak, G. Kasprowicz, W. Zabolotny, A. Byszuk, P. Zienkiewicz, M. Chernyshova, T. Czarski
Fusion Science and Technology | Volume 69 | Number 3 | May 2016 | Pages 595-604
Technical Paper | doi.org/10.13182/FST15-189
Articles are hosted by Taylor and Francis Online.
This work refers to the measurement system for soft-X-ray radiation (SXR) diagnostics using gaseous electron multiplier (GEM) detectors. In terms of tokamak plasma parameter control and optimization, it is important to determine the level of SXR generated by plasma. This work describes the whole system including the GEM detector, electronic modules, and data acquisition (DAQ) path. The structure of the DAQ system is presented in terms of hardware, firmware, and software architecture. The currently developed hardware allows sampling of the GEM detector signals with 125-MHz frequency and real-time field-programmable gate array (FPGA) processing. It enables processing of all events generated by the highest possible photon flux for the GEM detector. The developed FPGA firmware registers digitized GEM detector signals with a global trigger up to 625 kHz with all 64 channels sampling simultaneously and stores them in the local memory. Therefore, it makes it possible to obtain the photon energy spectra at high photon flux (105 to 106 counts · mm−2 · s−1) in online acquisition mode. The software block performs a DAQ system start-up configuration and provides the user interface. The first preliminary results of laboratory tests are also presented.