ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
A. Herrmann, B. Sieglin, M. Faitsch, ASDEX Upgrade Team
Fusion Science and Technology | Volume 69 | Number 3 | May 2016 | Pages 569-579
Technical Paper | doi.org/10.13182/FST15-187
Articles are hosted by Taylor and Francis Online.
Monitoring the surface temperature of in-vessel components is part of machine protection. The surface temperature itself and the resulting temperature of the interface to the cooling structure have to be taken into account. The tolerated surface temperature is not a fixed quantity but depends on the heat load scenario. The interface temperature can be calculated by solving the heat diffusion equation and determining the temperature profile inside the target. Surface effects and parasitic radiation falsify the estimated temperature, which is higher than the real bulk temperature. From the machine protection point of view, the contributions are inherently safe. They might result in an early alarm, not justified by the target temperature itself reducing the tolerated operation range. Real-time characterization and quantification can be done by considering the temporal evolution of the measured surface temperature. This is recommended to be done by heat load calculation. Infrared (IR) systems under development allow one to calculate the heat load from the measured photon flux in real time. The impact of surface effects and parasitic radiation on the calculated temperature is dependent on wavelength. A suitable compromise for an IR system is a mid-wave IR system. It should be combined with a near-IR system for temperature validation at higher temperatures.