ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
G. Hornung, A. Shabbir, G. Verdoolaege
Fusion Science and Technology | Volume 69 | Number 3 | May 2016 | Pages 586-594
Technical Paper | doi.org/10.13182/FST15-192
Articles are hosted by Taylor and Francis Online.
The possibility of inferring the properties of electron density fluctuations in tokamak plasmas from a reflectometer signal by means of Bayesian methods is investigated. Within the physical optics approximation, the interaction of the probing beam with the plasma is described as reflection from a surface with stochastic properties that is simulated numerically. A Bayesian technique is outlined to solve the inverse problem to determine the surface characteristics from the power spectrum of the reflectometer signal. It is shown that satisfactory estimates of the length and timescales and the amplitude of density fluctuations can be obtained in conditions relevant to core tokamak plasmas.