ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Keisuke Fujii, Motoshi Goto, Shigeru Morita, Masahiro Hasuo
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 514-525
Technical Paper | doi.org/10.13182/FST15-168
Articles are hosted by Taylor and Francis Online.
The Balmer-α line profile observed from high-temperature magnetized plasmas can be interpreted as the sum of narrow and broad components corresponding to the emission from atoms generated in edge and core regions, respectively. The inversion of this line profile reveals the atom density distribution in the plasma. The inversion method we reported in previous studies [Nucl. Fusion, 55, 063029 (2015) and Rev. Sci. Instrum., 85, 023502 (2014)] requires a regularization parameter that must be manually tuned to avoid overfitting. Therefore, it has been difficult to evaluate the uncertainty of the results. Here, we report an improved method based on Bayesian statistics in which the regularization parameter is interpreted as an adjustable parameter, which is then marginalized for the uncertainty evaluation. Two types of prior distributions were examined. The first is an empirical prior that assumes the smoothness of a solution, and the second is based on a diffusion model of hydrogen atoms. We found the use of the diffusion model as prior information to have an advantage with respect to the accuracy of the core region atom density.