ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
Fusion Science and Technology
Latest News
The Atlantic: Build what we’ve already invented
“What if I told you that scientists had figured out a way to produce affordable electricity that was 99 percent safer and cleaner than coal or oil, and that this breakthrough produced even fewer emissions per gigawatt-hour than solar or wind?” That’s the question that Derek Thompson, a staff writer at The Atlantic, asks in his article, "The Forgotten Stage of Human Progress," before revealing, “The breakthrough I’m talking about is 70 years old: It’s nuclear power.”
R. Fischer, A. Bock, M. Dunne, J. C. Fuchs, L. Giannone, K. Lackner, P. J. McCarthy, E. Poli, R. Preuss, M. Rampp, M. Schubert, J. Stober, W. Suttrop, G. Tardini, M. Weiland, ASDEX Upgrade Team
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 526-536
Technical Paper | dx.doi.org/10.13182/FST15-185
Articles are hosted by Taylor and Francis Online.
A tokamak equilibrium reconstruction can benefit much from internal measurements of the current distribution. If lacking robust internal measurements, the reconstruction will be ill posed in the plasma core, not allowing for a sensible estimation of the current distribution. Such deficiencies can be compensated for by modeling the current distribution evolution by employing the current diffusion equation between successive equilibria. A scheme for the coupling of the predictive current diffusion equation with the equilibrium reconstruction from an inverse Grad-Shafranov equilibrium solver minimizing a least-squares criterion on measured and modeled data is proposed. The scheme is intended for routine equilibrium analysis shortly after the discharge where all diagnostic data are available. Results from the implementation at ASDEX Upgrade are shown, applied to a reversed-shear plasma with counter-current electron cyclotron current drive and to the start-up phase of the plasma. Results are compared to TRANSP calculations.