ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
V. Loffelmann, J. Mlynar, M. Imrisek, D. Mazon, A. Jardin, V. Weinzettl, M. Hron
Fusion Science and Technology | Volume 69 | Number 2 | April 2016 | Pages 505-513
Technical Paper | doi.org/10.13182/FST15-180
Articles are hosted by Taylor and Francis Online.
Tomography inversion has been used routinely for processing outputs of plasma radiation diagnostics. Various tomographic algorithms have been developed, with those based on Tikhonov regularization being among the fastest while still providing reliable results. This paper presents a further speed optimization of the minimum Fisher Tikhonov regularization algorithm based on reducing iteration cycles used during the calculation. Ten to twentyfold speed gain is achieved compared to the original implementation. Robustness of the new method is demonstrated using both artificially generated data sets and real data from the soft X-ray diagnostics at the COMPASS tokamak. The advantage gained by the optimization is investigated in particular with respect to the possibility of real-time control of the plasma position; the option of impurity control is also discussed.