ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
K. R. Manes, M. L. Spaeth, J. J. Adams, M. W. Bowers, J. D. Bude, C. W. Carr, A. D. Conder, D. A. Cross, S. G. Demos, J. M. G. Di Nicola, S. N. Dixit, E. Feigenbaum, R. G. Finucane, G. M. Guss, M. A. Henesian, J. Honig, D. H. Kalantar, L. M. Kegelmeyer, Z. M. Liao, B. J. MacGowan, M. J. Matthews, K. P. McCandless, N. C. Mehta, P. E. Miller, R. A. Negres, M. A. Norton, M. C. Nostrand, C. D. Orth, R. A. Sacks, M. J. Shaw, L. R. Siegel, C. J. Stolz, T. I. Suratwala, J. B. Trenholme, P. J. Wegner, P. K. Whitman, C. C. Widmayer, S. T. Yang
Fusion Science and Technology | Volume 69 | Number 1 | January-February 2016 | Pages 146-249
Technical Paper | doi.org/10.13182/FST15-139
Articles are hosted by Taylor and Francis Online.
After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of them anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. It has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared.