ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
A. V. Hamza, A. Nikroo, E. Alger, N. Antipa, L. J. Atherton, D. Barker, S. Baxamusa, S. Bhandarkar, T. Biesiada, E. Buice, E. Carr, C. Castro, C. Choate, A. Conder, J. Crippen, R. Dylla-Spears, E. Dzenitis, S. Eddinger, M. Emerich, J. Fair, M. Farrell, S. Felker, J. Florio, A. Forsman, E. Giraldez, N. Hein, D. Hoover, J. Horner, H. Huang, B. Kozioziemski, J. Kroll, B. Lawson, S. A. Letts, D. Lord, E. Mapoles, M. Mauldin, P. Miller, R. Montesanti, K. Moreno, T. Parham, B. Nathan, J. Reynolds, J. Sater, K. Segraves, R. Seugling, M. Stadermann, R. Strauser, R. Stephens, T. I. Suratwala, M. Swisher, J. S. Taylor, R. Wallace, P. Wegner, H. Wilkens, B. Yoxall
Fusion Science and Technology | Volume 69 | Number 1 | January-February 2016 | Pages 395-406
Technical Paper | doi.org/10.13182/FST15-163
Articles are hosted by Taylor and Francis Online.
Complex and precise research targets are required for the inertial confinement fusion (ICF) experiments conducted at the National Ignition Facility. During the National Ignition Campaign (NIC) the target development team embarked on and completed a science and technology campaign to provide the capability to produce the required targets at the rate needed by the NIC. An engineering design for precision, manufacturing, and fielding was developed. This required new processes, new tooling, and equipment to metrologize and assemble components. In addition, development of new processing technology was also required.
Since the NIC had to respond to new results from ICF experiments, the target development team had to respond as well. This required target designs that allowed for flexibility in accommodating changes in the targets for capsule dimensions and doping levels, hohlraum dimensions and materials, and various new platforms to investigate new physics. A continuous improvement of processes was also required to meet stringent specifications and fielding requirements.