ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
A. Kimura
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 480-484
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A382
Articles are hosted by Taylor and Francis Online.
The US/Japan collaboration (Japan-US Program of Irradiation Tests for Fusion Research: JUPITER) has been effective in accumulating an irradiation database and in understanding the mechanism of irradiation effects of reduced activation ferritic steels (RAFS). The irradiation data obtained up to now indicates rather high feasibility of ferritic steel for application to fusion reactors, because of their high resistance to degradation of material performance by both the displacement damage and helium. The martensitic structure of the RAFS consists of a kind of lattice defects before the irradiation, such as dislocations, lath boundaries, precipitates and carbides, which strongly reinforce the resistance to displacement damages through absorption and annihilation of the point defects generated by the irradiation. Transmutation helium can be trapped at those defects in the martensitic structure so that the formation of helium clusters at grain boundaries, which causes intergranular embrittlement, is suppressed. The martensitic structure of the RAFS is considered to be appropriate for fusion structural material. Efforts to increase high temperature strength have been made for RAFS.