ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Tadayoshi Ohmori, Tadahiko Mizuno, Yoshinobu Nodasaka, Michio Enyo
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 367-382
Technical Paper | doi.org/10.13182/FST98-A38
Articles are hosted by Taylor and Francis Online.
Mercury, krypton, nickel, and iron with anomalous isotopic compositions were found to be produced on or in gold electrons during light water electrolysis. In addition, silicon and magnesium with anomalous isotopic compositions were also detected in the precipitates separated from the gold electrode electrolyzed at extremely high current densities. After the electrolysis, the surface of the electrode exhibited an extraordinary structure, i.e., a number of microcraters like volcanoes were developed. The structure of the outside wall of the craters was very much like that of the precipitates, and hexagonal crystallite layers in the inside wall of the craters suggested a partial recrystallization of the electrode material due to some intense heat evolution. The craters developed along the rim of the microcracks, microholes, and scraped edges of the electrode. These results suggest that some nuclear transmutation reactions occur during the electrolysis to produce these effects.