ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Tadayoshi Ohmori, Tadahiko Mizuno, Yoshinobu Nodasaka, Michio Enyo
Fusion Science and Technology | Volume 33 | Number 3 | May 1998 | Pages 367-382
Technical Paper | doi.org/10.13182/FST98-A38
Articles are hosted by Taylor and Francis Online.
Mercury, krypton, nickel, and iron with anomalous isotopic compositions were found to be produced on or in gold electrons during light water electrolysis. In addition, silicon and magnesium with anomalous isotopic compositions were also detected in the precipitates separated from the gold electrode electrolyzed at extremely high current densities. After the electrolysis, the surface of the electrode exhibited an extraordinary structure, i.e., a number of microcraters like volcanoes were developed. The structure of the outside wall of the craters was very much like that of the precipitates, and hexagonal crystallite layers in the inside wall of the craters suggested a partial recrystallization of the electrode material due to some intense heat evolution. The craters developed along the rim of the microcracks, microholes, and scraped edges of the electrode. These results suggest that some nuclear transmutation reactions occur during the electrolysis to produce these effects.