ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
R. Albanese, M. De Magistris, R. Fresa, F. Maviglia, S. Minucci
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 741-749
Technical Paper | doi.org/10.13182/FST15-127
Articles are hosted by Taylor and Francis Online.
We consider the problem of the accurate tracing of long magnetic field lines in tokamaks, which is in general crucial for the determination of the plasma boundary as well as for the magnetic properties of the scrape-off layer. Accurate field line tracing is strictly related to basic properties of ordinary differential equation (ODE) integrators, in terms of preservation of invariant properties and local accuracy for long-term analysis. We introduce and discuss some assessment criteria and a procedure for the specific problem, using them to compare standard ODE solvers with a volume-preserving algorithm for given accuracy requirements. In particular, after the validation for an axisymmetric plasma, a three-dimensional (3-D) configuration is described by means of Clebsch potentials, which provide analytical invariants for assessing the accuracy of the numerical integration. A standard fourth-order Runge-Kutta routine at fixed step is well suited to the problem in terms of reduced computational burden, with extremely good results for accuracy and volume preservation. Then we tackle the problem of field line tracing in the determination of plasma-wall gaps for a 3-D configuration, demonstrating the effective feasibility of the plasma boundary evaluation in tokamaks by tracing field lines with standard tools.