ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
L. Zang, T. Mizuuchi, N. Nishino, S. Ohshima, S. Yamamoto, Y. C. Sun, K. Kasajima, M. Takeuchi, K. Mukai, H. Y. Lee, N. Kenmochi, Y. Ohtani, K. Nagasaki, S. Kado, H. Okada, T. Minami, S. Kobayashi, N. Shi, S. Konoshima, Y. Nakamura, F. Sano
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 758-765
Technical Paper | doi.org/10.13182/FST14-862
Articles are hosted by Taylor and Francis Online.
In the medium-sized heliotron device Heliotron J, edge density fluctuation has been measured simultaneously with a high-speed video camera and a Langmuir probe. Poloidally propagating, parallel elongating filamentary structures with 20- to 30-kHz frequency and ~14-cm poloidal wavelength were observed by a camera. However, the radial position of this density mode is not well known with only camera data because the camera lens axis is perpendicular to the torus plane. To identify the span of this density mode, plasma-surface interaction (PSI) between the probe and the plasma has been analyzed. As the probe scanned into the plasma, enhanced brightness due to PSI was clearly observed in camera images. By comparing this enhanced brightness among different probe positions, the outmost margin of the 20- to 30-kHz mode observed by the camera has been identified to be within 10 mm outside from the last closed flux surface. This conclusion is supported by the spectrum of the probe data.