ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
R. Raman, T. R. Jarboe, J. E. Menard, S. P. Gerhardt, M. Ono, L. Baylor, W.-S. Lay
Fusion Science and Technology | Volume 68 | Number 4 | November 2015 | Pages 797-805
Technical Note | doi.org/10.13182/FST14-916
Articles are hosted by Taylor and Francis Online.
An important and urgent issue for ITER is predicting and controlling disruptions. Tokamaks and spherical tokamaks have the potential to disrupt. Methods to rapidly quench the discharge after an impending disruption is detected are essential to protect the vessel and internal components. The warning time for the onset of some disruptions in tokamaks could be <10 ms, which poses stringent requirements on the disruption mitigation system for reactor systems. In this proposed method, a cylindrical boron nitride projectile containing a radiative payload composed of boron, boron nitride, or beryllium particulate matter and weighing ~15 g is accelerated to velocities on the order of 1 to 2 km/s in <2 ms in a linear rail gun accelerator. A partially fragmented capsule is then injected into the tokamak discharge in the 3- to 6-ms timescale, where the radiative payload is dispersed. The device referred to as an electromagnetic particle injector has the potential to meet the short warning timescales for which a reactor disruption mitigation system must be built. The system is fully electromagnetic, with no mechanical moving parts, which ensures high reliability after a period of long standby.