ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
IAEA program uses radioisotopes to protect rhinos
After two years of testing, the International Atomic Energy Agency and the University of the Witwatersrand in Johannesburg, South Africa, have begun officially implementing the Rhisotope Project, an innovative effort to combat rhino poaching and trafficking by leveraging nuclear technology.
B. Sims, R. S. Bean, C. K. Choi
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 711-714
Technical Note | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-991
Articles are hosted by Taylor and Francis Online.
A team at the Budker Institute of Nuclear Physics has been working for several years to develop the Gas Dynamic Trap Mirror Neutron Source (GDT-NS) for fusion materials irradiation. In 2010 they optimized the design for a transmutation mission forecasting a 16 meter DT plasma with a fusion power of 15 MW and neutrons preferentially emitted into blankets placed around the mirror turning points. While this remains to be demonstrated experimentally, it is intriguing to explore what could be done with a low fusion power neutron source.
The GDT-NS team has previously modeled the burning of minor actinides. The work presented here builds on this by examining the burning of plutonium starting with transuranics recovered from spent nuclear fuel. It was found that a GDT plutonium burner with two blankets could eliminate nearly the plutonium produced in a single light water reactor core per full power year, 249 kg. By increasing the average blanket power with regular refueling, this quantity was increased to 381 kg per full power year. Next followed a preliminary overview of a GDT disposition blanket to meet US treaty commitments in burning surplus military plutonium.