ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Carlos E. Velasquez, Graiciany P. Barros, Claubia Pereira, Maria Auxiliadora F. Veloso, Antonella L. Costa
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 625-629
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-949
Articles are hosted by Taylor and Francis Online.
Different first wall material proposals based on tungsten alloy WNiFe, WLa2O3, W1.1TiC, W26Re, beryllium alloy S-B65, stainless steel SS316 and graphite have been studied in the last years. These materials must be capable of withstanding high temperature and neutron flux. Nevertheless, using hybrid systems, the first wall material choice could influence the criticality system due to the different properties of each material. To analyze this influence, two hybrid reactors were evaluated. The first one is a Tokamak based on magnetic confinement and the second one based on inertial confinement. Both systems contain a transmutation layer with reprocessed fuel spiked with thorium. The results showed the principal nuclides affected in the transmutation layer and the differences in the criticality due to neutron flux variations produced by the changes in the first wall material.