ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
S. Gordeev, F. Gröschel, V. Heinzel, W. Hering, R. Stieglitz
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 618-624
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-948
Articles are hosted by Taylor and Francis Online.
IFMIF (International Fusion Materials Irradiation Facility) is an accelerator based deuteron-lithium (D-Li) neutron source to simulate the neutron irradiation field in a fusion reactor. The target assembly of the IFMIF consists of the flow conditioners and the nozzle, which has to form a stable lithium jet. This work focuses on a numerical study of the flow conditioner efficiency, in which two different types of flow conditioners are compared by means of a detailed numerical analysis with respect to specific hydraulic effects in the pipe elbow and the inflow conditioners. The adequateness of two modelling approaches - Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) - to simulate an unstable flow through a 90° bend of circular cross section has been examined. Both methods investigated exhibit a reasonable agreement with the experimental data, but the DES approach does not require a very fine grid resolution and is less time consuming. The further conducted numerical analysis of the flow conditioner uses a DES approach. The calculations show that a honeycomb-screen combination is not capable to suppress effectively large scale swirl motions emerging from the bend. A frequency analysis of the static pressure fluctuation reveals instabilities in the shear layer between the separation zone and the accelerated outer region, which additionally increase the inhomogeneity of the axial velocity distribution.