ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
S. Gordeev, F. Gröschel, V. Heinzel, W. Hering, R. Stieglitz
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 618-624
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-948
Articles are hosted by Taylor and Francis Online.
IFMIF (International Fusion Materials Irradiation Facility) is an accelerator based deuteron-lithium (D-Li) neutron source to simulate the neutron irradiation field in a fusion reactor. The target assembly of the IFMIF consists of the flow conditioners and the nozzle, which has to form a stable lithium jet. This work focuses on a numerical study of the flow conditioner efficiency, in which two different types of flow conditioners are compared by means of a detailed numerical analysis with respect to specific hydraulic effects in the pipe elbow and the inflow conditioners. The adequateness of two modelling approaches - Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) - to simulate an unstable flow through a 90° bend of circular cross section has been examined. Both methods investigated exhibit a reasonable agreement with the experimental data, but the DES approach does not require a very fine grid resolution and is less time consuming. The further conducted numerical analysis of the flow conditioner uses a DES approach. The calculations show that a honeycomb-screen combination is not capable to suppress effectively large scale swirl motions emerging from the bend. A frequency analysis of the static pressure fluctuation reveals instabilities in the shear layer between the separation zone and the accelerated outer region, which additionally increase the inhomogeneity of the axial velocity distribution.