ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
Blair P. Bromley
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 546-560
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-851
Articles are hosted by Taylor and Francis Online.
A study of computational/analytical neutronics and heat transfer has been carried out for different types of gas-cooled fuel bundle lattices that could be used for the sub-critical fertile/fissionable blanket of a cylindrical-geometry hybrid fusion-fission reactor (HFFR) with thorium-based fuels. The HFFR concept envisioned is one with a simple cylindrical geometry, using an anticipated variant of a magnetic mirror to confine a deuterium-tritium (DT) fusion plasma. The annular-cylindrical blanket is approximately 10 meters long and 2 meters thick, and is a repeating lattice of pressure tubes filled with 0.5-meter fuel bundles that are made of (233U,Th)O2, and refuelled continuously on-line, sharing technological features with pressure-tube heavy water reactors (PT-HWR) and the Advanced Gas-Cooled Reactor (AGR) in the U.K.. With a 2-meter thick blanket, the average fissile content in the blanket needs to be at least 2.5 wt% in order for the HFFR system to be self-sustaining in power.