ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
F. Bonelli, L. V. Boccaccini, B.-E. Ghidersa, Q. Kang, L. Savoldi, R. Zanino
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 507-511
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-985
Articles are hosted by Taylor and Francis Online.
The first 3D thermal-fluid-dynamic and structural analyses done for the design and pre-test assessment of the so-called Thermo-Cycle Mock-up (TCM), reproducing about 0.3 m2 of a flat first wall (FW) with relevant helium cooling channels, are presented, based also on previous computational and experimental activities conducted at KIT but limited so far to a single cooling channel with straight heated length. The TCM is the first of a series of FW mock-ups presently under construction, to be tested starting from 2015 in the large HELOKA facility at KIT. Here, the fluid dynamics in the 180° turns of the TCM cooling channels is investigated together with the effects of heat transfer between neighboring channels, when the plate is subject to steady-state heat fluxes in the range 0.3-0.5 MW/m2. Based on the computed temperature maps, the stresses in the TCM and the related damage figures for the main failure modes (i.e., ratcheting and creep/fatigue) are assessed. These are compared with allowable limits in code and standards for the qualification of the TCM design and related to the prediction of the behavior of the component in the actual fusion environment.