ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Prachai Norajitra, Widodo Widjaja Basuki, Maria Gonzalez, David Rapisarda, Magnus Rohde, Luigi Spatafora
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 501-506
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-932
Articles are hosted by Taylor and Francis Online.
The dual-coolant lead-lithium (DCLL) blanket concept, which is considered as a candidate for fusion power plants and possibly for a demonstration reactor (DEMO), is being investigated within the framework of the European Power Plant Physics and Technology (PPPT) study. One of major issues of the DCLL concept development is the design of the flow channel inserts (FCIs), which are essential for the reduction of magneto-hydrodynamic (MHD) pressure losses. Due to the tight schedule for the short-term PPPT DEMO, a low-temperature DCLL concept with a liquid metal outlet temperature below 500°C has been proposed. This allows the use of a simpler type of FCI (taking into account the LM corrosion issues), e.g. Eurofer-Alumina-Eurofer sandwich FCI, instead of the SiCf/SiC version for high temperature case, the production thereof is challenging. This paper discusses the technological study on manufacturing of some FCI design variants and post-examination of the samples.