ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
D. Andruczyk, D. N. Ruzic, D. Curreli, J. P. Allain, HIDRA Team
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 497-500
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-989
Articles are hosted by Taylor and Francis Online.
The Hybrid Illinois Device for Research and Applications (HIDRA) is a medium sized classical stellarator using a l = 2, m = 5 configuration with a major radius R = 0.72 m and minor radius a = 0.19 m. HIDRA will initially be operated with 26 kW of magnetron heating (2.45 GHz) and will operate with a magnetic fields B0 = 0.087 T to 0.5 T. Electron temperatures up to Te = 20 eV and densities up to ne = 1×1018 m-3 are expected with Bernstein wave heating (OXB). HIDRA has a flexible magnetic configuration due to the addition of vertical field coils. HIDRA will be used mainly in the development of new dedicated plasma material interaction experiments in a fusion type environment. Development of multi-scale and multi phase materials adaptive to extreme environment will be a focus of HIDRA and UIUC’s expertise with in-situ diagnostics of materials will open up new opportunities for innovative material testing. HIDRA will also serve as an education and training the next generation of plasma and fusion scientists and engineers. Basic plasma physics with an emphasis on plasma material interactions will be a focus of HIDRA using established diagnostic techniques as well as the development of new diagnostics for understanding the basic plasma physics and plasma material interactions.