ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
D. Andruczyk, D. N. Ruzic, D. Curreli, J. P. Allain, HIDRA Team
Fusion Science and Technology | Volume 68 | Number 3 | October 2015 | Pages 497-500
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-989
Articles are hosted by Taylor and Francis Online.
The Hybrid Illinois Device for Research and Applications (HIDRA) is a medium sized classical stellarator using a l = 2, m = 5 configuration with a major radius R = 0.72 m and minor radius a = 0.19 m. HIDRA will initially be operated with 26 kW of magnetron heating (2.45 GHz) and will operate with a magnetic fields B0 = 0.087 T to 0.5 T. Electron temperatures up to Te = 20 eV and densities up to ne = 1×1018 m-3 are expected with Bernstein wave heating (OXB). HIDRA has a flexible magnetic configuration due to the addition of vertical field coils. HIDRA will be used mainly in the development of new dedicated plasma material interaction experiments in a fusion type environment. Development of multi-scale and multi phase materials adaptive to extreme environment will be a focus of HIDRA and UIUC’s expertise with in-situ diagnostics of materials will open up new opportunities for innovative material testing. HIDRA will also serve as an education and training the next generation of plasma and fusion scientists and engineers. Basic plasma physics with an emphasis on plasma material interactions will be a focus of HIDRA using established diagnostic techniques as well as the development of new diagnostics for understanding the basic plasma physics and plasma material interactions.