ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Lihua Zhou, Rui Vieira, Jeffrey Doody, William Beck, David Terry, William Cochran, James Irby, Zach Hartwig, Harold Barnard, Brandon Sorbom, Dennis Whyte
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 448-452
Technical Note | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-933
Articles are hosted by Taylor and Francis Online.
Advanced Plasma Material Interaction (PMI) science requires in-situ time and space-resolved measurements over a large area of Plasma Facing Component (PFC) surfaces to study fuel retention & recovery, erosion & redeposition, material mixing, etc. A novel PFC diagnostic technique Accelerator-based In-situ Materials Surveillance (AIMS) has been developed for Alcator C-Mod. At present, the AIMS covers a relatively small (35 cm) poloidal section of the inner wall PFCs at a single toroidal angle; an upgrade has been proposed which will enable nearly full poloidal (124 cm) and 40 degree toroidal PFC coverage. This paper introduces the design, analysis and fabrication of the new TF magnet power supply system for this upgrade. First, the design of the busbar system and its support structure is described, which are required to carry 15 kA current for long pulse operation of up to 25 minutes and fault condition of 400 kA for 1 second. Additional elements in the power supply system include a bidirectional crowbar, varistor protection assemblies, and a high current bus switch. Secondly, multi-physics analyses involved in the design are presented. Electro-magnetic analysis is performed to evaluate the spreading load of the two current-carrying busbars while Joule heating with thermal racheting analysis is to estimate the temperature rise in the components. Structural analysis taking into account dead weight, thermal expansion, spreading load and seismic load is performed. All analyses are completed using finite element analysis software COMSOL. Analytical calculations are included to validate the FEA results. The power supply system is ready for fabrication.