ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Joseph D. Kotulski, Rebecca S. Coats
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 438-442
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-114
Articles are hosted by Taylor and Francis Online.
The ITER blanket system provides shielding of the plasma controlling field coils and vacuum vessel from the plasma heat flux as well as nuclear heating from the plasma. In addition to the thermal requirements the blanket module attachment scheme must withstand the electromagnetic forces that occur during possible plasma disruption events. During a plasma disruption event eddy currents are induced in the blanket module (first wall and shield block) and interact with the large magnetic fields to produce forces which could potentially cause mechanical failure. For this reason the design and qualification of the ITER blanket system requires appropriate high-fidelity electromagnetic simulations that capture the physics of these disruption scenarios.
The key features of the analysis procedure will be described including the modeling of the geometry of the blanket modules and the plasma current during disruption.
The electromagnetic calculations are performed using the Opera-3d software. This software solves the transient 3D finite element problem from which the eddy currents are calculated. The electromagnetic loads due to these eddy currents are then calculated and translated to the local coordinate system of the blanket module of interest.