ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Joseph D. Kotulski, Rebecca S. Coats
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 438-442
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-114
Articles are hosted by Taylor and Francis Online.
The ITER blanket system provides shielding of the plasma controlling field coils and vacuum vessel from the plasma heat flux as well as nuclear heating from the plasma. In addition to the thermal requirements the blanket module attachment scheme must withstand the electromagnetic forces that occur during possible plasma disruption events. During a plasma disruption event eddy currents are induced in the blanket module (first wall and shield block) and interact with the large magnetic fields to produce forces which could potentially cause mechanical failure. For this reason the design and qualification of the ITER blanket system requires appropriate high-fidelity electromagnetic simulations that capture the physics of these disruption scenarios.
The key features of the analysis procedure will be described including the modeling of the geometry of the blanket modules and the plasma current during disruption.
The electromagnetic calculations are performed using the Opera-3d software. This software solves the transient 3D finite element problem from which the eddy currents are calculated. The electromagnetic loads due to these eddy currents are then calculated and translated to the local coordinate system of the blanket module of interest.