ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Youji Someya, Kenji Tobita, Hiroyasu Utoh, Nobuyuki Asakura, Yoshiteru Sakamoto, Kazuo Hoshino, Makoto Nakamura, Shinsuke Tokunaga
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 423-427
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-101
Articles are hosted by Taylor and Francis Online.
We have considered a strategy for reducing the radioactive waste generated by the replacement of in-vessel components, such as blanket segments and divertor cassettes, for the fusion DEMO reactor. In the basic case, the main parameters of the DEMO reactor are a major radius of 8.2 m and a fusion power of 1.35 GW. Blanket segments and divertor cassettes should be replaced independently, as their lifetimes differ. A blanket segment comprises several blanket modules mounted to a back-plate. The total weight of an in-vessel component is estimated to be about 6,648 ton (1,575, 3,777, 372, and 924 ton of blanket module, back-plate, conducting shell, and divertor cassette, respectively). The lifetimes of a blanket segment and a divertor cassette are assumed to be 2.2 years and 0.6 years, respectively, and 52,487 tons of waste is generated over a plant life of 20 years. Therefore, there is a concern that the contamination-control area for radioactive waste may need to increase due to the amount of waste generated from every replacement. This paper proposes a management scenario to reduce radioactive waste. When feasible and relevant, back-plates of blanket segment and divertor cassette bodies (628 ton) should be reused. Using the three-dimensional neutron transportation code MCNP, the displacement per atom (DPA) of the SUS316LN back-plates is 0.2 DPA/year and that of the F82H cassette bodies is 0.6 DPA/year. Therefore, the reuse of back-plates and cassette bodies would be possible if re-welding points are arranged under neutron shielding. We found that radioactive waste could be reduced to 20 % when tritium breeding materials are recycled. Finally, we propose a design for the DEMO building that uses a hot cell and temporary storage.