ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
J. T. Fisher, J. W. Leachman
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 388-391
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-970
Articles are hosted by Taylor and Francis Online.
Flow and heat transfer measurements of solid hydrogenic materials inside twin screw extruders are not available. Fusion tokamaks like ITER require fuel pellet injection at 99.9% reliability which requires validated twin screw extruder throughput models for operation. The throughput of an extruder is limited by the amount of leakage flow through clearance gaps which depends on flow properties that vary strongly with temperature for hydrogenic materials. A Diagnostic Twin Screw Extruder (DTSE) has been built to measure azimuthal and axial temperature distributions as well as torque, cooling power, and screw speed for H2, D2, and Ne extrusions. In this paper the experimental procedure for the DTSE is described and azimuthal temperature measurements at three locations along the screws are discussed. The results show variations in temperature as large as 0.5 K azimuthally and >0.5 K axially. The overall temperatures stay close to the solidification temperature and therefore support high backflow and explain extrudate stall scenarios experienced in other hydrogenic twin screw extruders. This temperature data is therefore useful to size tolerance gaps in future extruder designs and enables refinement of predictive models for continuous operation.