ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
INL’s Teton supercomputer open for business
Idaho National Laboratory has brought its newest high‑performance supercomputer, named Teton, online and made it available to users through the Department of Energy’s Nuclear Science User Facilities program. The system, now the flagship machine in the lab’s Collaborative Computing Center, quadruples INL’s total computing capacity and enters service as the 85th fastest supercomputer in the world.
J. T. Fisher, J. W. Leachman
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 388-391
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-970
Articles are hosted by Taylor and Francis Online.
Flow and heat transfer measurements of solid hydrogenic materials inside twin screw extruders are not available. Fusion tokamaks like ITER require fuel pellet injection at 99.9% reliability which requires validated twin screw extruder throughput models for operation. The throughput of an extruder is limited by the amount of leakage flow through clearance gaps which depends on flow properties that vary strongly with temperature for hydrogenic materials. A Diagnostic Twin Screw Extruder (DTSE) has been built to measure azimuthal and axial temperature distributions as well as torque, cooling power, and screw speed for H2, D2, and Ne extrusions. In this paper the experimental procedure for the DTSE is described and azimuthal temperature measurements at three locations along the screws are discussed. The results show variations in temperature as large as 0.5 K azimuthally and >0.5 K axially. The overall temperatures stay close to the solidification temperature and therefore support high backflow and explain extrudate stall scenarios experienced in other hydrogenic twin screw extruders. This temperature data is therefore useful to size tolerance gaps in future extruder designs and enables refinement of predictive models for continuous operation.