ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Ethan Coffey, Tim Bigelow, Ira Griffith, Greg Hanson, Arnold Lumsdaine, Claire Luttrell, David Rasmussen, Chuck Schaich, Bill Wolframe
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 383-387
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-962
Articles are hosted by Taylor and Francis Online.
Finite element analysis calculations are performed to determine the temperature profile in sections of the ITER Electron Cyclotron Heating (ECH) transmission line waveguide. Each aluminum, corrugated waveguide transmission line will transmit up to 1.5 MW of electromagnetic radiation over roughly 200 meters from a 170 GHz gyrotron to heat the plasma in the tokamak. The “ridged tube” waveguide has integral water cooling traces which are lined with copper tubing. Each transmission line includes miter bends which may be actively cooled and waveguide couplings, where the waveguide cannot be actively cooled due to coupling hardware. The amount of cooling water available is limited, so determining the required amount of water in the cooling lines is essential. Finite element computational analyses are performed to determine the effect of the heat load and water cooling on the temperature profile of the waveguide in various steady-state cases.