ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Hongsuk Chung, Jongchul Park, Daeseo Koo, Hyun-Goo Kang, Min Ho Chang, Sei-Hun Yun, Seungyon Cho, Ki Jung Jung, Seungwoo Paek
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 368-372
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-944
Articles are hosted by Taylor and Francis Online.
A tritium plant for nuclear fusion power plants consists of an SDS (Storage and Delivery System), an ISS (Hydrogen Isotope Separation System), a TEP (Tokamak Exhaust Processing system), and an ANS (tritium plant Analytical System). Korea has been developing an SDS. The main purpose of this tritium storage and delivery system is to store and supply the D-T gas needed for DT plasma operation and to provide the necessary infrastructure for short- and long-term storage of large amounts of tritium. We have been developing tritium storage beds for the SDS.
The primary role of the metal hydride beds in the SDS is to store and supply D-T fuel during DT plasma operation. ZrCo and depleted uranium (DU) have been extensively studied. Compared to the use of ZrCo, which is disproportionate at temperatures of higher than 350°C, DU hydride can be heated up to very high temperatures sufficient to pump hydrogen isotopes without using gas compressors. Our experimental apparatus used to test the experimental DU bed consists of a tank that stores and measures the hydrogen, and a DU bed used for the hydriding/dehydriding of hydrogen. Our DU bed is a horizontal double-cylinder type with sintered metal filters. The bed is composed of primary and secondary vessels. The primary vessel contains a DU, and a vacuum layer is formed between the primary and secondary vessels. In this study, we present our recent experimental results on the direct delivery of hydrogen isotopes from a DU hydride bed. We also present the effect of the initial bed temperature and impurity gas on the hydriding rates.