ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Yasuhisa Oya, Misaki Sato, Kenta Yuyama, Masanori Hara, Yuji Hatano, Masao Matsuyama, Takumi Chikada
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 358-361
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-931
Articles are hosted by Taylor and Francis Online.
Dynamics of tritium recovery using CuO catalyst and water bubbler was studied as a function of gas flow rate and CuO temperature. The rate constant of tritiated water formation by CuO catalyst at the temperature above 500 K was determined to be k [s-1] = 5.4×105 exp (-0.65 eV / kBT). For the flow rate less than 50 sccm, it was found that the reaction rate will be controlled by the desorption rate of HTO on the surface of CuO. These results were applied for the design of tritium removal system at radiation-controlled area. It was concluded that the reactor tubing with 1.0 meter length at 600 K will be suitable to reduce the tritium concentration less than 1/1000 and the longer reactor tubing will be required if the operation temperature will be lower than 600 K.