ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Tim D. Bohm, Mohamed E. Sawan
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 331-335
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-981
Articles are hosted by Taylor and Francis Online.
In ITER, determination of radiation loads such as nuclear heating due to neutrons and photons (gammas) is an important part of the design process. Monte Carlo transport codes need accurate neutron and photon cross section libraries to produce accurate results. Because photon heating dominates the contribution to total nuclear heating for common materials like stainless steel and copper in several key components of ITER, the photon cross section library is particularly important. In this work, two ITER realistic benchmark calculation models are used to determine the impact on nuclear heating by the cross section library used in the calculation. The results show that the nuclear heating can be as much as 5% lower to as much as 6% higher than the nuclear heating calculated using the standard fusion neutron and photon cross section library.