ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
T. Nishitani, K. Kondo, S. Ohira, T. Yamanishi, M. Sugimoto, T. Hayashi, K. Ochiai
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 326-330
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-930
Articles are hosted by Taylor and Francis Online.
A neutron source for material and component tests is an essential tool for the DEMO reactor development. An accelerator-based neutron source such as IFMIF is regarded as the most promising one in Japan and the EU. The construction plan of IFMIF is still open due to the influence of the large cost overrun of ITER procurements. Japan Atomic Energy Agency (JAEA) has a plan of a neutron source for material and component tests using an IFMIF/EVEDA prototype accelerator and a lithium test loop for the IFMIF target facility. Expected performances of three options; 9 MeV and upgrading to 26 or 40 MeV of deuteron beam, are discussed. At the back plate position of the target, 1.5, 14, and 25 dpa/fpy are expected for 9, 26, and 40 MeV case, respectively. The option of 40 MeV is desirable, however, the option of 26 MeV is acceptable for blanket functional tests and material tests.