ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Ronald Petzoldt, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin, Robert Kratz
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 308-313
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-915
Articles are hosted by Taylor and Francis Online.
A traveling-wave induction accelerator was designed and built to launch 1 cm diameter cylindrical aluminum tubes (surrogate IFE targets) into a vacuum chamber at speeds greater than 50 m/s.
The accelerator is 0.55 m long with 300 coils. Each coil is energized 30 degrees out of phase with the adjacent coils resulting in a traveling sinusoidal magnetic field that moves past the projectile with resulting accelerating force.
Saddle coils surrounding the axial drive coils provide projectile spin.
Four saddle coils were placed around the projectile’s flight path at a distance of 0.4 m from the barrel. AC voltage energizes these coils resulting in an AC quadrupole magnetic field that provides a centering force as the projectiles pass through the coils.
To further improve accuracy, an actively controlled, in-flight, magnetic steering system was placed after the initial passive steering coils. This system measured the position of the projectile at two locations, in real time and adjusted the AC current in another set of four saddle coils to correct the measured trajectory errors. The first set of steering coils improved the standard deviation by a factor of 8 and the second set by an additional factor of 3, for a total factor of 24 improvement.