ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Jon T. Van Lew, Alice Ying, Mohamed Abdou
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 288-294
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST14-937
Articles are hosted by Taylor and Francis Online.
Pebble-scale models of the interactions inside packed beds are critical for determining alterations to thermophysical properties in the wake of changes to the packed bed due to cracking, sintering, or creep-deformation of the ceramic pebbles. Simultaneously, the helium purge gas flow through the pebble bed can change; while not specifically playing a role as coolant, it does have an impact on the thermal transport in the volumetrically heated bed. We present numerical tools that are capable of resolving pebble-scale interactions coupled to bed-scale thermofluid flow. The new computational techniques are used to show that maximum temperatures in pebble beds do not increase drastically in spite of the significant amount of cracking induced in our numerical model. Furthermore a complete flow field of helium moving through densely packed spheres is modeled with the lattice-Boltzmann method to reveal the strong effect of slow-moving helium gas on flattening temperature profiles in pebble beds with nuclear heating.