ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
R. Sugano, K. Morishita, A. Kimura
Fusion Science and Technology | Volume 44 | Number 2 | September 2003 | Pages 446-449
Technical Paper | Fusion Energy - Fusion Materials | doi.org/10.13182/FST03-A375
Articles are hosted by Taylor and Francis Online.
Helium desorption from Fe-based model alloys irradiated by energetic helium ions was measured during post-irradiation annealing to investigate the energetics and kinetics of formation and annihilation of helium-related defects. Desorption temperatures were observed to be widely ranged from 450 to 1500 K, indicating that helium is bound to a wide variety of trapping sites such as vacancies and dislocations at various binding states. Such a feature is also observed in fusion ferritic steel. A comparison of helium desorption spectra obtained using Fe, Fe-Cr and Fe-Cr-Ni alloys showed that helium is more strongly trapped in bcc Fe than fcc Fe. It indicates that the long distance migration of helium takes place less frequently in bcc matrix, which may reduce the probability of helium clustering. Fusion ferric steel has a lot of trapping sites for helium such as dislocations, solute atoms, the interface of precipitates, impurities and lath boundaries, and so on, and in addition, it has bct matrix, indicating that most of helium atoms must be dispersed in the matrix and therefore it is difficult for them to cluster as a bubble. This may be a reason for higher helium resistance of the steel.