ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Peter H. Titus, H. Zhang, A. Lumsdaine, W. D. McGinnis, J. Lore, H. Neilson, T. Brown, J. Boscary, A. Peacock, Joris Fellinger
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 272-276
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-105
Articles are hosted by Taylor and Francis Online.
Early implementation of divertor components for the Wendelstein 7-X stellarator will include an inertially cooled system of divertor elements called the Test Divertor Unit (TDU). One part of this system is a scraper element that is intended to explore methods of mitigating heat flux on the ends of the TDU elements. This system will be in place in 2017, after a run period that will involve no divertor, and will precede steady state operation with actively cooled divertors scheduled for 2019. The TDU scraper element is an experimental device with uncertain requirements and with loading conditions which will developed as a part of the experiment. The pattern of heat flux may vary from currently predicted distributions and intensities. The design of the scraper element must accommodate this uncertainty. Originally the mechanical design was to be based on extensive studies for the monoblock-based design of an actively cooled system. An obvious simplification is the elimination of the manifolding needed for the water cooling. The wall panels on which the panels are mounted are to be maintained at 200C or less. Thermal ratcheting of the tiles, supporting structures, and backing structures is managed with adequate cooldown times, thermal anchors, where allowed, and radiative shields. Water cooling of the shields was proposed and rejected. Better radiation modeling is showing less need for multiple shields, but during initial run periods, the scraper element will have to be restricted to an acceptable operating envelope. Thermal instrumentation is recommended.