ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
T. Mutoh, K. Nagaoka, H. Takahashi, H. Kasahara, M. Osakabe, S. Kubo, T. Shimozuma, Y. Yoshimura, K. Tsumori, T. Seki, K. Saito, H. Igami, H. Nakano, K. Ikeda, M. Kisaki, R. Seki, S. Kamio, T. Ii, Y. Nakamura, Y. Takeiri, O. Kaneko, LHD Experiment Group
Fusion Science and Technology | Volume 68 | Number 2 | September 2015 | Pages 216-224
Technical Paper | Proceedings of TOFE-2014 | doi.org/10.13182/FST15-120
Articles are hosted by Taylor and Francis Online.
Recent advances in the high power and steady state heating system and experiment results of the Large Helical Device (LHD) are reviewed in this paper. Plasma performance is extended largely through high power NBI, ECH and steady state ICRF heating devices, and improved operation techniques. The NBI of a 28 MW has extended the plasma parameter regime such as ion ITB plasmas, has a central ion temperature of more than 8 keV, and the extremely high-density plasmas ten times higher than the tokamak limit. An ECH system with seven gyrotrons (total power of 4.6MW) has been operated for pre-ionization and plasma heating. The high electron temperature regime was extended toward a higher density regime and a central electron temperature of 13.5 keV was achieved with a line-averaged electron density of ne = 1 x 1019 m-3. Steady state operation plasma with ne = 1.2 x 1019 m-3, ion and electron temperature of 2 keV, and plasma sustainment time of 48 min was achieved with ICH and ECH heating power of 1.2 MW for majority helium with minority hydrogen.