ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Younggil Jin, Hyun-Su Kim, Sun-Taek Lim, Jin-Young Lee, Nam-Kyun Kim, Jae-Min Song, Gon-Ho Kim
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 113-119
Technical Paper | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-886
Articles are hosted by Taylor and Francis Online.
The effect of interface diffusion between tungsten and graphite on embrittlement has not been examined over the tungsten ductile-brittle transition temperature. To analyze interface embrittlement with tungsten carbide (WC) formation and hardness, a reactive diffusion barrier model was adapted to clarify the roles of leak rate, lag time, and impurity. Plasma-sprayed tungsten (PS-W) on graphite with molybdenum interlayer (diffusion barrier) was fabricated using plasma-spray. The carbon concentration and hardness were measured using energy-dispersive X-ray spectroscopy and micro-indentation after furnace experiments relevant to plasma-facing component upper limit temperature (1470 K). The lag time and the leak rate were determined by the model with different impurity amounts (10-30 at. %) and barrier thicknesses (1-40 μm). It is worth noting that the lag time determines embrittlement threshold time because it delays the onset of diffusion, and it is expanded with thicker barrier and impurity (0.07-21000 ms). The leak rate represents the embrittlement rate since it limits the diffusion flux, and it does not depend on impurity but on barrier thickness. Diffusion-induced interface embrittlement was measured and estimated based on WC fraction. The embrittlement can be spatially expanded with time, suggesting that interface embrittlement can be severe for KSTAR long-term operation.