ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Satoshi Nakamoto, Yousuke Takeshita, Shota Hagihara, Takayuki Wada, Hiromasa Takeno, Yasuyoshi Yasaka, Yuichi Furuyama, Akira Taniike
Fusion Science and Technology | Volume 68 | Number 1 | July 2015 | Pages 166-170
Technical Note | Open Magnetic Systems 2014 | doi.org/10.13182/FST14-900
Articles are hosted by Taylor and Francis Online.
With an aim to improve the total efficiency of a D-3He nuclear fusion direct energy conversion system, a secondary electron direct energy converter (SEDEC) is proposed. The incident high-energy protons in an SEDEC penetrate a large number of foil electrodes aligned in the direction of the proton beam, and emitted secondary electrons are recovered. The results of the initial experiments showed that most of the secondary electrons flowed into anteroposterior electrodes and did not arrive at the electron collector located alongside and perpendicular to the direction of the proton beam. A magnetic field was introduced to push the electrons toward the electron collector, but it was not effective for energy recovery. This technical note analyzes the trajectories of electrons in the presence of the magnetic field and proposes and examines a revised arrangement of permanent magnets. The arrangement of the magnets along one side of the proton beam greatly improved the energy recovery; however, the recovery level was lower than that without magnets.